15.4 Videos Guide

15.4a

- Mass of a planar lamina with shape D and density $\rho(x, y)$ • $\circ m = \iint_{D} \rho(x, y) dA$
- Total charge over an area with shape D and charge density $\sigma(x, y)$ $\circ \quad Q = \iint_{D} \sigma(x, y) \, dA$
- Moments •
 - About the *x*-axis: $M_x = \iint_D y \rho(x, y) dA$
 - About the y-axis: $M_y = \iint_D x \rho(x, y) dA$
- Center of mass

$$\circ \quad (\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$$

- Moments of inertia (second moments)
 - About the *x*-axis: $I_x = \iint_D y^2 \rho(x, y) dA$
 - About the y-axis: $I_y = \iint_D x^2 \rho(x, y) dA$
 - About the origin: $I_0 = \iint_{D} (x^2 + y^2) \rho(x, y) dA = I_x + I_y$
- Radii of gyration
 - With respect to the *x*-axis: $\overline{\overline{y^2}} = \frac{l_x}{m}$ With respect to the *y*-axis: $\overline{\overline{x^2}} = \frac{l_y}{m}$

 - \circ (\bar{x}, \bar{y}) is the rotational analog to the center of mass

15.4b

- Probability •
 - $P((X,Y) \in D) = \iint_D f(x,y) dA$, where f is the joint density function of X and Y
 - Properties of a joint density function: $f(x, y) \ge 0$ and $\iint_{\mathbb{R}^2} f(x, y) dA = 1$
- Expected values for f a joint density function of random variables X and Y
 - *x*-mean: $\mu_1 = \iint_{\mathbb{R}^2} x f(x, y) dA$
 - y-mean: $\mu_2 = \iint_{\mathbb{R}^2} y f(x, y) dA$